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The environment is shaped by two sources of temporal uncertainty:
the discrete probability of whether an event will occur and—if it
does—the continuous probability of when it will happen. These two
types of uncertainty are fundamental to every form of anticipatory
behavior including learning, decision-making, and motor planning.
It remains unknown how the brain models the two uncertainty pa-
rameters and how they interact in anticipation. It is commonly as-
sumed that the discrete probability of whether an event will occur
has a fixed effect on event expectancy over time. In contrast, we
first demonstrate that this pattern is highly dynamic and monoton-
ically increases across time. Intriguingly, this behavior is indepen-
dent of the continuous probability of when an event will occur. The
effect of this continuous probability on anticipation is commonly
proposed to be driven by the hazard rate (HR) of events. We next
show that the HR fails to account for behavior and propose a model
of event expectancy based on the probability density function of
events. Our results hold for both vision and audition, suggesting
independence of the representation of the two uncertainties from
sensory input modality. These findings enrich the understanding of
fundamental anticipatory processes and have provocative implica-
tions for many aspects of behavior and its neural underpinnings.
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Aboxer circles her opponent, prepared to respond in fractions
of a second, anticipating and blocking the next attack—if

there is one. A commuter wonders for minutes when the train will
arrive—knowing it might have been cancelled. A leopard lies in
ambush for hours, ready to seize its prey at the water hole—if it
comes to drink. A stockbroker follows the market over days and
weeks trying to anticipate the right moment to sell—which may
never come.
These examples illustrate, over a range of time scales, a funda-

mental challenge in anticipatory decision-making: How does the
brain predict events which are distributed in time and which may or
may not occur? This question pertains to two different types of
uncertainty that frequently cooccur in real-world stochasticity,
namely, a discrete type of uncertainty about whether an event will
happen (Bernoulli) and a continuous type about when it will
happen (continuous variation in probability density as a function of
a continuously elapsing interval).
The discrete and perhaps most fundamental source of uncer-

tainty is the probability PO that an event E will occur at all. In case
the event occurs, there is uncertainty about when exactly it will
happen. This source of uncertainty can be summarized as a prob-
ability density function (PDF), γE, which is defined such that

Pr(E∈ [a, b]|E) = ∫ b
aγE(t)  dt. [1]

Here, t denotes time, and Pr(E∈ [a, b]|E) is the probability that
the event E will happen within the time interval [a, b], conditional
on its occurrence.
Little experimental work investigates the interaction between

these two types of uncertainty, PO and γE, and the underlying

mechanisms remain largely unknown. Importantly, both sources
of uncertainty are frequent elements of experimental protocols,
and their hypothesized impact on behavior varies remarkably
across different fields of research.
In cognitive psychology and neuroscience, the continuous un-

certainty, γE, is commonly investigated in variable–foreperiod de-
signs, wherein stimulus appearance follows probability distributions
across time (1–3). In more traditional switch designs, the fore-
periods vary among a small number of time spans. Classic experi-
ments demonstrated a monotonic decrease in reaction time (RT)
in the case of a uniform foreperiod distribution (4) or RT modu-
lation by interval variability (5). The discrete uncertainty, PO, is
implemented in these protocols by the use of catch trials (omission
of a target stimulus, switch design) (4, 6) or the presentation of a
catch stimulus (“no-go” trials) (7). The uncertainty of event oc-
currence is intended to reduce the frequency of early responses, to
avoid automatic responses, or to maintain participants’ alertness
(4); however, potential effects of this manipulation are seldom
addressed in data analysis.
In associative learning, the discrete uncertainty is addressed in

models of behavior. Many Pavlovian and operant protocols in-
vestigate the effect on learning of events that are expected but fail
to occur (8). Prominent models of behavior from this field, such as
the Rescorla–Wagner model (9) from which many contemporary
reinforcement learning models derive, treat such stimulus absence
as an event in itself, a failure of reinforcement, which affects the
associative learning strength (8). In trace conditioning, the interval
between conditioned and unconditioned stimuli introduces the
continuous uncertainty to these experimental designs (10).
In decision-making, both the discrete uncertainty (e.g., the

probability of reward) (11, 12) and the continuous uncertainty (e.g.,
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a delayed reward) (13, 14) are considered critical to the calculation
of value. Specifically, midbrain dopamine neurons adapt both to
discrete (12) and continuous (14) uncertainty. Interestingly, in the
reward literature, these two sources of uncertainty are typically not
combined in single experiments, and conclusions about potential
interactions cannot be drawn. Nonetheless, the effect of event un-
certainty in reward anticipation (15, 16), and the certainty effects in
decision-making (17, 18), invite the hypothesis that the impact of PO
on event anticipation might be dynamic rather than static (Fig. 1A).
In work on temporal anticipation, the deceptively simple ma-

nipulation of PO is commonplace, through the use of catch trials,
and it introduces uncertainty about the occurrence of events
(PO < 1) (2, 7, 19, 20). Likewise, the absence of catch trials in
temporal anticipation (1, 21–23) results in event certainty (PO = 1).
In either case, the influence of PO on anticipation introduces an
unavoidable confound in experimental designs. However, the po-
tential effects of PO on adaptive behavior and its neural correlates
are often not addressed or are assumed to be of fixed nature,
uniform across time. Therefore, despite the large body of work on
temporal anticipation (1–3, 7, 19–25), the specific nature of the
effect of PO on anticipatory processes remains unknown.
Unsurprisingly, very little is known about the interaction be-

tween the discrete and continuous uncertainties. One theoretically
driven attempt to study the interaction proposed that the brain
maintains a simultaneous representation of two complementary
states: 1) the probability density of an event happening and 2) the
probability density of an event not happening, thus combining both
sources of uncertainty (26). This study was specifically tailored to
associative learning, and the findings may not readily generalize to
temporal anticipation.

The different examples from action, learning, and decision-
making illustrate a common challenge: probability estimation of
whether an event happens and when it happens. These two funda-
mental types of uncertainty and their interaction affect any task that
has an anticipatory element. Hence, it is of broad significance to
understand how the brain models each one of them and combines
them.
Regarding the relation of RT to γE, it has typically been hy-

pothesized that RT is inversely proportional to the hazard rate
(HR) (1–4). The HR, h(t), of an event happening at a given time t
represents the probability density of this event at time t, given that
it has not already happened, within the current time span (4).

h(t) = γE(t)
∫ ∞
t γE(u)  du

. [2]

A sharp increase in the HR h(t) at time t suggests the event is
imminent. The widely adopted hypothesis that HR drives antici-
pation was recently challenged, and it was demonstrated that RTs
are better captured by the reciprocal of event probability density in
the context of a single, fixed PO (27). Here, both hypotheses
(Fig. 1D) are tested at various levels of PO in order to evaluate
whether the reciprocal PDF is indeed better than HR as a model
of event anticipation (Fig. 1 E and F).
The reciprocal of probability is an interesting quantity in many

aspects. Computationally, it is a simpler and more stable variable
than the HR. When estimating event probability within a given
time interval, the reciprocal of probability is equivalent to “1 in N”
counting: If the probability of an event in this time interval is 0.1,
then this can be directly computed by counting that 1 out of 10
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Fig. 1. Hypotheses and experimental design. (A) Possible dynamic anticipation effects of discrete uncertainty, PO (Left). Uncertainty in time estimation,
represented by dynamic Gaussian kernel, is hypothesized to be driven by PO (i.e., to scale inversely with the anticipation of whether an event will or will not
occur [Right]). In the fixed anticipation case (black line in Left), Gaussian kernel (not depicted) assumes a fixed SD. (B) In “set”–“go” trials, participants are
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of trials differed in overall event probability, which could assume one of three values: PO = 1 (“go” cue on every trial), PO = 0.8 (“go” cue in 80% of trials), and
PO = 0.6 (“go” cue in 60% of trials). Parameterization of PO facilitates investigation of influence of event occurrence probability on event anticipation. Time
between the onset of “set” and “go” cues, (“go” time), followed one of four PDFs, γE: uniform (mean = 0.92 s ± 0.31 s), Gaussian (mean = 0.9 s ± 0.21 s),
exponential (mean = 0.66 s ± 0.27 s), or flipped exponential (mean = 1.18 s ± 0.27 s) (SI Appendix, Table S1). Each PDF was conditioned according to PO in a
given block. Block-wise presentation of trials: sensory modality (audition or vision), PO and γE were fixed per block. (D) Hypothesized effect of continuous
uncertainty, γE , on temporal expectancy. Mapping of γE to RT is presumed to be based on either HR model or PDF-based model (SI Appendix, Supplementary
Methods). Note that in the case of symmetric γE (e.g., uniform or Gaussian), the PDF-based model predicts a symmetric RT curve. (E) Explanatory variables
based on reciprocal probabilistically blurred (“pb”) PDF (SI Appendix, Supplementary Methods). (F) Explanatory variables based on HR (“mir”: mirrored, “tb”:
temporally blurred, and pb, SI Appendix, Supplementary Methods).

2 of 11 | PNAS Grabenhorst et al.
https://doi.org/10.1073/pnas.2019342118 Two sources of uncertainty independently modulate temporal expectancy

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019342118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019342118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019342118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019342118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019342118/-/DCSupplemental
https://doi.org/10.1073/pnas.2019342118


www.manaraa.com

events occur in this interval. This simple operation is easily
implementable in an elementary neural network (28). Another
interesting aspect of the 1/PDF representation is that it is closely
related to the concept of information, in the sense of Shannon:
The log of the reciprocal of the probability is the surprisal of an
event, which is the amount of information it conveys (29). In order
to investigate the possibility that the brain estimates the amount of
information of an anticipated event, we test models of RT based
on Shannon surprisal. The question is not whether the brain can
compute the logarithm of input information in order to guide
behavior; theWeber–Fechner law (30) and Hick’s law (31), as well
as evidence from diverse fields such as language processing, in
which reading times follow the logarithm of inverse word proba-
bility (32), provide evidence for this capacity. We ask whether
there is logarithmic “mental scaling” when events are probabilis-
tically distributed within a bounded time interval.
We note that behavioral results comprise a separable set of

processes: 1) the perceptual processing of the input, 2) the repre-
sentation of uncertainties, and 3) the translation of the represen-
tation into behavior. Therefore, our experiments were performed in
two different modalities (vision and audition), with the aim to tease
these processes apart.
The findings make two contributions to the understanding of

temporal anticipation. First, we show that the probability of
event occurrence, PO, has a dynamic, monotonically increasing
effect on RTs across the entire tested time span, irrespective of
the type of event PDF, γE. Second, we demonstrate that models of
RT based on the reciprocal probability or its log outperform
models employing the HR, reinforcing the failure of the HR as a
model of anticipation. Critically, our findings are consistent in
vision and audition, suggesting that the representations of the two
uncertainties, PO and γE, are independent of the input modality.

Results
Design. The experiment investigates how two uncertainty param-
eters and their interaction affect event anticipation. In a simple
set–go experiment, we independently parameterized both the
discrete probability of event occurrence, PO, and the continuous
probability density of the event across time, γE (Fig. 1B). PO is
parameterized by using three levels of occurrence probability
(Fig. 1 C, Left). γE is parameterized by using four different event
PDFs (Fig. 1 C, Right). In the set–go task, participants responded
as fast as possible to the “go” cue with a button press. A short RT
required prediction of whether there will be a “go” cue as well as
an estimate about when it will occur, linking the experiment to
many everyday tasks that demand a rapid action based on accurate
prediction of future events.
A total of 24 participants generated ∼5,700 RTs each. First, we

examined the effect of PO on average RT and its variance: An
offset was observed in mean RT across the different levels of PO,
with the shortest RT at PO = 1, where there is no uncertainty
about event occurrence, and PO = 0.6 yielding the longest RTs.
These findings were consistent across all four different types of γE
(Fig. 2A). A similar monotonic pattern with respect to PO values,
also consistent across all types of γE, was observed in the RT
interquartile range (IQR) (Fig. 2B). Both findings show that RT
becomes shorter and less variable as the probability of event oc-
currence, PO, increases. These results also demonstrate that the
average effect of PO on RT is consistent, irrespective of the
functional form of γE, suggesting independence between these two
sources of uncertainty. This assumption of independence is statis-
tically supported by the absence of any interactions in ANOVAs
performed separately for median RT and IQR of RT (SI Appendix,
Tables S3–S7).
As expected, γE determined the shape of RT curves across time

in both vision (Fig. 2C) and audition (SI Appendix, Fig. S1).
Specifically, the RT curves had an inverse relation to γE: in which
the event PDF assumed high values, RT was short, and vice versa.

This inverse relationship is clearly evident for the Gaussian, ex-
ponential, and flipped exponential γE cases. In the uniform γE case,
in which probability density is fixed across time, the increase in RT
toward the extrema of the “go” time range may result from the
uncertainty in time estimation around the “go” time period. This
feature of RT modulation will be addressed below. Nonetheless,
the overall relation between γE and RT was qualitatively preserved
for all examined levels of PO as demonstrated in Fig. 2C for all four
types of γE. The same plots also show that the effect of PO on RT
curves is not fixed but dynamic across time: Toward the end of the
“go” time interval, the level of PO strongly affects RT curves. Note,
however, that the curves’ offset between levels of PO covers the
entire “go” time range. In order to further examine the dynamics of
this gradually changing offset of RT, we used the RT curve from
the PO = 1 condition as a reference. This reference RT curve was
subtracted from the RTs of each of the other two levels of PO. The
resulting ΔRT curves demonstrate that the gradual effect of PO
increases monotonically across time (Fig. 2D).
Although the ΔRT curves appear to approximate linear func-

tions across time, in some cases they show exponential profiles
(e.g., in the Gaussian condition). For this reason, as a final step to
descriptively assess whether the ΔRT curves are better captured
by a linear (Eq. 3) or an exponential (Eq. 4) function of “go” time,
we fitted two corresponding models.

f(tgo) = a  tgo + c, [3]

f(tgo) = a  eb  tgo + c. [4]

Overall, the exponential model (Fig. 2D and SI Appendix, Fig.
S2) fit the data better than the linear one (SI Appendix, Fig. S3);
median-adjusted R2 = 0.69 for the linear model and 0.79 for the
exponential model (z = −3.31, P = 0.001, Wilcoxon signed rank,
SI Appendix, Fig. S4). The exponential model implies that, rela-
tive to the PO = 1 condition, RT increases nonlinearly over the
range of “go” time as PO decreases to 0.8 and is even more
pronounced when PO decreases to 0.6.
To summarize, we report two results. First, the effect of PO on

temporal expectancy is dynamic and increases exponentially with
time—in contrast to the widely held assumption in the literature
that it is fixed across time. Second, the effect of PO on RT was
consistent across different forms of γE, indicating that both
sources of uncertainty are treated as independent parameters of
temporal–probabilistic information. The reported results held in
all the respective conditions, suggesting independence of sensory
input modality (SI Appendix, Fig. S5).

Modeling Effects of Continuous Event Uncertainty. We next investi-
gated how the dynamic effects of γE and PO can be combined in a
model of RT. The aim was not to develop a process model of the
mechanisms by which sensory evidence is accumulated (e.g., drift
diffusion models). Rather, the aim was to develop a descriptive
model that captures the combined effects of γE and PO on RTs
and whose residuals could provide insights about the mechanisms
through which the brain models probabilities across time.
Regarding the effect of γE, the recently proposed PDF-based

model (27) hypothesizes that RT is reciprocally related to the PDF
of events, γE, and that the uncertainty in elapsed time estimation is
largely modulated by event probability (probabilistic blurring, SI
Appendix, Supplemental Methods). This probabilistic blurring uses a
Gaussian kernel whose σ scales inversely with γE but not with elapsed
time itself as suggested by the scalar variability of time estimation
(33), which we here refer to as temporal blurring. Note that in both
temporal and probabilistic blurring, the effect of the Gaussian kernel,
hypothesized to represent the uncertainty in time estimation, is larger
at the extrema of the “go” times range (tmin, tmax) because the
Gaussians near the extrema of the range extend beyond the limits of
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“go” times (SI Appendix, Supplemental Methods). This modeling
feature proposes that the brain potentially under- and overesti-
mates the limits of the “go” times range. In the case of a uniform
γE, temporal/probabilistic blurring therefore predicts asymmetric/
symmetric U-shaped RT curves, despite the constant value of the
uniform γE. This model prediction is related to the uncertainty in
time estimation, and it differs conceptually from accounts of time
perception based on optimality (34) or regression to the mean in a
more general way (35). To capture the effect of γE, we fitted the
prominent mirrored, temporally blurred HRmodel (1, 3) to RT; it
did not capture the data well in any condition (Fig. 1F and SI
Appendix, Fig. S6). The same analysis was repeated for the mir-
rored, probabilistically blurred HR model, which also did not
capture the data (Fig. 1F and SI Appendix, Fig. S7). In contrast, the
models based on the reciprocal, probabilistically blurred PDF fit the
data well at all three levels of PO and in all four γE conditions (SI

Appendix, Fig. S8). This confirms the recent finding that the re-
ciprocal PDF is superior to the HR as a model of RT in anticipation
(27) and extends this result to different levels of PO and the uniform
distribution of events in time.

Reciprocal Probability versus Shannon Surprisal. There is a close
relation between reciprocal probability and Shannon surprisal,
defined as log(1/probability of event), inviting the question of
whether the brain quantifies information about event probability
by estimating Shannon surprisal. The computation of surprisal
implies that the brain performs a logarithmic scaling on proba-
bility. This hypothesis was tested by comparing RT models based
on the reciprocal probability and Shannon surprisal. As the HR
can also be seen as probability scaled by the survival function
(HR = PDF/[1 − CDF]), where CDF is the cumulative distribu-
tion function, the logarithm of both the mirrored probabilistically
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condition, see SI Appendix, Table S2. For ANOVAs, see SI Appendix, Tables S3–S7. Error bars denote SD. n = 66,279 RTs.
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blurred HR and the reciprocal, probabilistically blurred HR, was
tested as a model of RT (Fig. 1F)—in comparison to the logarithm
of the event PDF, log2(1/P) (Fig. 1E and SI Appendix, Supple-
mental Methods). The two HR-based models failed to fit the data
both qualitatively and quantitatively (SI Appendix, Figs. S9 and
S10). The models based on the reciprocal probability (Fig. 3D and
SI Appendix, Fig. S8) and on Shannon surprisal (Fig. 3B and SI
Appendix, Fig. S11) captured the effect of γE on RT well (Fig. 3C),
with comparable performance in terms of adjusted R2 (z = −1.5,
P = 0.14, Wilcoxon signed rank). Nonetheless, there are qualita-
tive differences between the models. In the Gaussian PDF case,
surprisal predicts a more linear increase/decrease in RT toward
the flanks of the distribution (Fig. 3B) than the reciprocal PDF
(Fig. 3D). Similar qualitative differences are also seen in the ex-
ponential and flipped exponential conditions (SI Appendix, Figs.
S8 and S11; for a detailed overview of differences in model pre-
dictions, see plots of explanatory variables in Fig. 3A and SI Ap-
pendix, Fig. S12). Based on this evidence, one cannot conclude
that either model is better. Consequently, we cannot confirm or
reject the hypothesis that the brain is computing Shannon surprisal
by logarithmically scaling reciprocal probability.

Modeling Effects of Discrete Event Uncertainty. Next, a model was
developed of the dynamic effect of PO on RT across time. This
model augments the model of the effect of the continuous uncer-
tainty on RT. For the latter, we chose the model based on the
reciprocal PDF, as its performance is similar to the one based on
surprisal but computationally simpler. The best fit of the reciprocal,
probabilistically blurred PDF-based model to RT was for PO = 0.8,
providing an adequate model of RT modulation in all four γE
conditions for both vision and audition (Fig. 3D and SI Appendix,
Fig. S8). The better qualitative and quantitative suitability of the
PDF-based model for PO = 0.8 is demonstrated in the cases of the
two symmetric γE types (Gaussian and uniform conditions), in
which the RT patterns largely reflected the symmetry of the input
event PDF, γE (SI Appendix, Fig. S13 and Table S8). The privileged
level of PO = 0.8 was further demonstrated by the higher average-
adjusted R2 across all γE cases (Fig. 3E) and by the fact that the
model residuals’ slope did not significantly differ from zero
(Fig. 3 F, Middle). In contrast, at the other two levels of PO, the
model deviated from the data in a systematic way (Fig. 3D, arrows).
At PO = 1, the model underestimated RT at shorter “go” times and
overestimated them at longer “go” times, as can be seen in the
residual plots in Fig. 3 F, Top. At PO = 0.6, the opposite pattern was
observed (Fig. 3 F, Bottom). These systematic deviations between
data and model across the levels of PO are not surprising because
the uncertainty parameter PO was found to have an independent
effect on RT over “go” time (Fig. 2D), and the reciprocal PDF
model alone does not contain a component to account for it. In
sum, the initial fits of the reciprocal PDF-based model capture basic
features of RT modulation at all levels of PO, although evidently an
additional model component was needed to better account for the
deviations between RT and model at PO = 1 and PO = 0.6.
We added the effect of PO on RT to the PDF-based model to

arrive at a combined model of RT that accounts for the indepen-
dent effects of both γE and PO. The fitted reciprocal event PDF
model (Fig. 3D and SI Appendix, Fig. S8) was used as the com-
ponent accounting for the effect of γE. To account for the effect of
PO, we built on the earlier exponential model of ΔRT (Fig. 2D and
SI Appendix, Fig. S2) and used an exponential function, ΦO, with
respect to PO and “go” times.

ΦO(PO, tgo) = a  ((1 − ΡO) − p)  e(b|(1−ΡO)−p|tgo) + c. [5]

This function allows both positive and negative exponential slopes,
in accordance with the qualitative characteristics of theΔRT curves
(SI Appendix, Fig. S14). Note that p represents the function’s pivot

point, whose value was estimated from fits to ΔRT (SI Appendix,
Tables S9 and S10 and Supplemental Methods). Here, instead of
using the actual RTs of the reference condition (PO = 0.8) for
deriving ΔRT, we used the PDF-based model of RTs of the con-
dition PO = 0.8 and subtracted it from RT of the PO = 0.6 and
PO = 1 conditions. These model-based residual curves were cap-
tured well by ΦO (SI Appendix, Fig. S15). Finally, this ΦO model
was added to the event PDF-based model in order to derive the
combined model of the effects of both γE and PO. This combined,
additive model fit the data well in both vision and audition (Fig. 4A
and SI Appendix, Fig. S16), eliminating the tilting in the RT curves
observed at PO = 1 and PO = 0.6 (Fig. 3D). At PO = 1 and PO = 0.6,
the residuals’ slopes of the combined model no longer differed
from zero (compare with Fig. 3F), indicating an adequate modeling
account of the effects of PO on RT over the range of “go” times
(Fig. 4B). The ΦO function proved to be a beneficial model com-
ponent, indicated by a significantly higher value of median-adjusted
R2: 0.67 for the model built on the reciprocal γE alone and 0.87 for
the combined model, consisting of the fitted reciprocal γE and the
added ΦO function fitted to residuals (Fig. 4C).
We investigated whether between-participant RT variance affects

the group-level fits of the combined model. Mixed-effects regression
revealed that the largest part of the variance introduced at the
single-participant level results from participants differing in their
average RT (i.e., in offset) but not in RT curves’ slope over “go”
time (SI Appendix, Supplemental Results 1 and Fig. S17). These
findings support that the linear fits of the combined model to group-
level data are adequate, and that the fits are not confounded by
nonlinear between-participant differences in RT curves.

Modeling Cross-Modality Differences. The combined model of RT
based on the function ΦO and the reciprocal γE does not contain a
component to account for potential effects of the sensory input
modality. We found that median RT was shorter in auditory than
in visual conditions (−17.5 ± 41.6 ms, mean ± SD, P = 8.0 × 10−12,
t(23) = 7.13, two-tailed Student’s t test) and that IQR was also
smaller in audition than in vision (−13.2 ± 33.8 ms, mean ± SD,
P = 1.8 × 10−10, t(23) = −6.61, two-tailed Student’s t test); see SI
Appendix, Table S3 for ANOVA. These findings agree with the
literature on temporal discrimination, which suggests that audition
is temporally more precise or highly resolved than vision (36–43).
In light of this modality specificity in fundamental timing pro-
cesses, the differences between audition and vision were further
investigated. Building on 1) the possibly higher accuracy in tem-
poral discrimination in audition and 2) the observed shorter RTs
in audition (SI Appendix, Fig. S5A) compared to vision (Fig. 2A),
audition was used as the reference condition. ΔRT curves were
calculated by subtracting auditory RT from visual RT. In all ex-
perimental conditions, the curves show the highest values in ΔRT
at short “go” times and thereafter monotonically decrease over
time. This pattern indicates that the differences between the two
modalities are dynamic over the examined range of “go” times and
not fixed across time. Importantly, this pattern was observed in all
four event distributions, γE, and at all three levels of PO, sug-
gesting a process independent of the two uncertainty parameters.
Previous work identified similar differences in ΔRT between vi-
sion and audition and between somatosensation and audition that
were also independent of γE (27). In this previous work, the ΔRT
curves were captured by an exponential function of “go” time in
three different event distributions (exponential, flipped exponen-
tial, and Gaussian) at a single level of PO = 0.9. Therefore, in the
present study, ΔRT curves were also modeled with the same ex-
ponential function of “go” time (SI Appendix, Eq. S17). This
simple model captured ΔRT well in all conditions (SI Appendix,
Fig. S18, black curves).
As a final step, the combined model was used to test the

validity of the exponential function as a model of cross-modality
ΔRT. If the exponential model of ΔRT indeed captured the
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difference in RT between audition and vision, then adding this
model to the combined model of auditory RT from the previous
section should capture visual RT in all conditions. Indeed, this
combined, cross-modality model accounted well for the visual
RT curves (SI Appendix, Fig. S19). Taken together, the expo-
nential function as a model of cross-modality ΔRT implies that
the brain’s efforts to model its temporal environment based on

estimation of two uncertainty parameters are affected by the
processing difference between audition and vision.

Analysis of RT Distributions. As a final step, the RT distributions
were analyzed to describe possible computations underlying the
generation of responses. We fitted the data with an exponential–
Gaussian PDF. This model is a convolution of exponential and

0.4 0.9 1.4
0.2

0.25

0.3

0.35

0.4
 RT uniform  γE

RT exponential  γE

RT flipped exp.  γE

Go time (s)

R
T 

(s
)

C

D

R
T 

(s
)

R
T 

(s
)

R
T 

(s
)

adj. R2 = 0.90

PO = 0.8

PO = 0.6

adj. R2 = 0.96

adj. R2 = 0.91

0.24
0.26

0.28

0.3
adj. R2 = 0.96

0.4 0.9 1.4

Go time (s) Go time (s)
0.4 0.9 1.4

Uniform  γE

Exponential γE

Flipped exp. γE

PO = 0.8
PO = 1

0.24

0.28

0.32

adj. R2 = 0.50

0.4 0.9 1.4

0.26

0.3

0.34 adj. R2 = 0.84

0.4 0.9 1.4

0.2
0.4
0.6
0.8

1

PO = 1 

Models of RT based on 1 / PDF

F

PO = 0.8 

PO = 0.6 

ad
j. 

R
2

0
N = 16,869 RTs

E

0.4 0.9 1.4

-40

0

   40

r = - 25.1
p = 1.1 x 10-11 

r = 17.5
p = 1.2 x 10-6

0.4 0.9 1.4
Go time (s)

R
es

id
ua

ls
  (

m
s)

 γE affects RT slope 

1 / PDF model 

PO = 1

PO = 0.6

RT

0.4 0.9 1.4

r =  1.7
p = 0.46 

PO = 0.8

-40

0

   40

-40

0

   40

R
es

id
ua

ls
  (

m
s)

R
es

id
ua

ls
  (

m
s)

Gaussian  γE

log2(1/P)
1/PDF

0.4 0.9 1.4 0.4 0.9 1.4 0.4 0.9 1.4 0.4 0.9 1.4
Go time (s)Go time (s)Go time (s)Go time (s)

Go time (s)
1.40.4 0.9

0.22

0.26

0.3

adj. R2 = 0.45

0.24

0.26

0.28

0.3

adj. R2 = 0.93

0.26

0.3

0.34

adj. R2 = 0.78

1.40.4 0.9 1.40.4 0.9
Go time (s)Go time (s)

A

B
RT Gaussian γE

log2(1/P) model

PO = 0.8

0.4 0.9 1.4

0.4 0.9 1.4

Exponential γE Flipped exp. γEUniform  γE Gaussian  γE

R
T 

(s
)

Models of residuals

PO = 1 PO = 0.8 PO = 0.6

Fig. 3. Models based on γE fitted to visual RT. (A) Explanatory variables log2(1/P) (Shannon surprisal) and 1/PDF, both probabilistically blurred, predict similar
RTs in the uniform case but differ in Gaussian, exponential, and flipped exponential cases, where log2(1/P) predicts more linear RT slopes. (B) Shannon
surprisal-based model fitted to RT in Gaussian γE condition. (C) Condition-specific modulation of RT by γE over the entire “go” time span. Exemplary plot, PO =
0.8. (D) Across levels of PO, models based on the reciprocal, probabilistically blurred γE (SI Appendix, Supplementary Methods) capture key aspects of RT
modulation. Arrows indicate systematic deviations between model and data due to the skewed shape of RT curves at PO = 1 and, less pronounced, at PO = 0.6.
At PO = 0.8, the model fitted the data particularly well in all γE conditions (black arrows). (E) Comparison of goodness of fit of the reciprocal, probabilistically
blurred γE model across levels of PO. Median-adjusted R2, n = 8 per condition. (F) Residuals from fitted PDF-based model. At PO = 1, negative slope indicates
that model is skewed to left relative to data. At PO = 0.6, positive slope indicates that model is skewed to right relative to data. No significant slope at PO = 0.8
(linear regression) (visual conditions). In A, RT curves were smoothed by reducing “go” time step size from 32 to 64 ms.

6 of 11 | PNAS Grabenhorst et al.
https://doi.org/10.1073/pnas.2019342118 Two sources of uncertainty independently modulate temporal expectancy

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019342118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2019342118/-/DCSupplemental
https://doi.org/10.1073/pnas.2019342118


www.manaraa.com

Gaussian PDFs, and it proposes that RT can be decomposed into
the sum of peripheral Gaussian process and a more central decision
process that is hypothesized to be exponential (4, 44). The ex-
Gaussian model provided an excellent fit to the data on both
group-level (adjusted R2 = 0.99, SI Appendix, Fig. S20) and single-
participant levels (adjusted R2 = 0.84 ± 0.073, mean of all single
subject fits across all conditions ± SD). The model’s three pa-
rameter estimates, Gaussian μ and σ and exponential τ, were in-
vestigated over the three levels of PO. In all γE conditions, and in
both vision (SI Appendix, Fig. S21) and audition (SI Appendix, Fig.
S22), Gaussian μ resembles the pattern observed in median RT,
and the exponential parameter τ resembles the pattern observed in
IQR(RT). Gaussian SD σ is smaller in magnitude than τ and shows
no clear modulation by PO, indicating that most of the variance in
the RT distributions introduced by PO is captured by the expo-
nential part of the model and not by the Gaussian. In sum, the
offset in RT across levels of PO was captured by the Gaussian
component, and the variance in RT was captured mostly by the
exponential, giving interesting predictions for what neural activity
patterns could be sought in neurophysiological recordings of the
brain’s responses in anticipatory behavior.
The results were validated by further control analyses. These

included split data analyses investigating the stability of behavior
within condition and adaptation to new experimental conditions:
(SI Appendix, Figs. S23–S27 and Table S11) an analysis investi-
gating the effect of early responses on fits of the combined model
(SI Appendix, Fig. S28), an analysis investigating the potential
effects of catch trials on consecutive trials (SI Appendix, Fig.
S29), and an analysis of the potential effects of trial number on
RT (SI Appendix, Supplemental Results 2).

Discussion
We investigated the influence of two uncertainty parameters: the
probability of event occurrence, PO, and the event PDF, γE, on
temporal expectancy. RT was sensitive to both sources of uncer-
tainty. The first finding was that the effect of PO is not uniform

across time but is dynamic. The second finding was that the dy-
namic effect of PO on RT is qualitatively the same (monotonically
increasing with time), irrespective of the type of event distribution
γE. This evidence suggests that these two sources of uncertainty
are processed independently. The distinct influences of PO and γE
on temporal expectancy were captured by a combined, additive
model relating both uncertainty parameters to RT. This model
summarized anticipatory behavior—in vision and audition—
indicating that modality-independent, fundamental computations
underlie the processing of both uncertainty parameters.

Discreteness and Catch Trials. The first parameter, PO, representing
the uncertainty of whether an event will occur at all, is typically
exploited in experimental designs by the use of catch trials
(i.e., trials in which no event occurs). In the vast literature of such
experiments, the effect of the catch trial percentage on temporal
expectancy is typically not addressed. Instead, it is implicitly as-
sumed to be a static factor, uniform across time. We demonstrate
that this assumption is wrong, and that the effect of catch trials on
RT is dynamic across time. This finding has wide implications for
how RT patterns should be interpreted.
The dynamic effect of PO on RT across time was similar, irre-

spective of the event PDF type (uniform, Gaussian, exponential,
or flipped exponential). It implies independence between the
neurocomputational processes involved in the estimation of these
two different sources of uncertainty.
We modeled the dynamic effect of PO on RT with an expo-

nential function, ΦO (Eq. 5). The effect of PO on RT was small at
short “go” times and increased exponentially for longer ones. The
RT modulation by PO can be intuitively summarized as the fol-
lowing: The lower the probability of event occurrence, PO, the
steeper the exponential increase across time. The function ΦO
captures this RT dynamic, which suggests that the brain’s repre-
sentation of event occurrence probability is indeed a dynamic
variable in stochastic space that, similar to a PDF, unfolds in time.
In sum, our results were consistent across audition and vision and
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across four different event PDFs, γE, indicating that ΦO describes a
modality-independent, canonical process in temporal expectancy.
We designed our experiment to be very basic, without any de-

cision (choice) or reward-based manipulations, in order to identify
in their simplest form the foundations of event anticipation. The
discovery that the discrete uncertainty of occurrence has a con-
tinuous, monotonically increasing effect on event expectancy—
regardless of the continuous uncertainty—has fundamental im-
plications for different brain functions that involve temporal an-
ticipation, including learning, decision-making, motor planning,
and perceptual processing.
We converged on describing the functional form of the mono-

tonically increasing effect of PO on RT with an exponential
function. Note that the CDF and the HR both contain informa-
tion that an event has not already happened and therefore—
theoretically—these variables could also drive the effect of PO.
However, in the four event PDF conditions the HR is not even
consistently monotonic (SI Appendix, Fig. S30), and consequently,
the variable cannot account for the data. The CDF is monotoni-
cally increasing but, depending on the PDF, this monotonic in-
crease differs in form: It is close to linear in the uniform case,
sigmoidal for the Gaussian, and nonlinear in a convex (exponen-
tial) or concave way (flipped exponential) (SI Appendix, Fig. S30).
Therefore, the CDF is not the driving parameter used by the brain
to model PO. The obvious conclusion is that the CDF and HR are
not related to PO, which indicates that the effect of PO is inde-
pendent of the distribution of events in time.
What other kind of process could account for such exponential

behavior? One possibility could be that the effect of PO on RT
reflects a rate process. These are typically encountered in tem-
poral discounting, in which the brain discounts value across time
with a specific rate.
Two popular types of models used to describe such temporal

discounting are exponential and hyperbolic models (13, 14). The
exponential discounting models are used in economics, and in their
simplest form, the value is discounted by an exponential function of
the form Ae−rt, where A is the value at time t = 0 and r is the
discount rate (45). The hyperbolic temporal discounting models
are most popular in behavioral psychology and neuroscience, and
in their simplest form, the value is discounted across time by the
equation A/(1+rt), where A is the value at t = 0 and r is the dis-
count rate across time t. We speculate that the exponential-like
effect of PO on RT can be the result of a similar exponential or
hyperbolic rate process. The main difference is that this process is
not decreasing but increasing as it corresponds to an exponential
increase of RT. The interpretation behind either of these nonlinear
functions would be that the brain reduces resources allocated to
the task as time elapses, and this happens in a more pronounced
way the higher the probability of an event not occurring at all. Such
a reduction of resources could be seen as driven by a dynamic
estimate of value. Of course, our experiments do not include a
reward or punishment, and any connection to temporal discounting
remains speculative.
The mechanistic implementation of the effect of PO on RT may

be related to the scalar variability, which proposes that the un-
certainty in elapsed time estimation increases in direct proportion
to elapsed time itself (33). This increasing uncertainty is typically
represented by Gaussians with means centered on the anticipated
event time point and SDs proportional to the means (10). A
similar representation can be formulated for the continuous,
monotonically increasing effect of PO across time, captured by the
function ΦO. The dynamic effects of ΦO can be reinterpreted with
a Gaussian kernel whose SD scales with ΦO (SI Appendix, Fig.
S31). This leads to a Gaussian kernel centered at each “go” time,
which can be hypothesized to reflect the allocation of attention
over time (SI Appendix, Discussion 1). Contrary to the currently
widespread view that inferential processes themselves—in our

case, the brain’s efforts to model event stochasticity based on
sensory information—do not incorporate a cost function (46), we
suggest that, based on the simple hypothesis of attention, ΦO may
reflect principles of economy governing neural resources. It is also
tempting to interpret the effect of PO on RT to be an attentional
phenomenon because—through top-down modulation—attention
has been suggested to influence early sensory processing (19, 47).
This may have indirect effects on fundamental computations such
as the estimation of elapsed time, which is an example of a source
of endogenous uncertainty for which humans rapidly form accu-
rate representations (48). The deployment of attention based on
event probability may further influence later processing stages in
the cortical hierarchy. Candidate processes include the modula-
tion of motor system preparation based on event expectancy (49,
50). The resulting dynamics in the readiness to respond might
balance the benefits of fast responses with the costs of false
alarms, linking the concept of a dynamic state of expectancy,
captured by ΦO, to known features of behavior under risk (51).
These hypotheses about potential mechanistic underpinnings of
the effect of Po on anticipation require targeted experimental
designs that are beyond the scope of this paper.

Continuity and Event PDFs. The second uncertainty parameter ma-
nipulated in the experiment was the type of event PDF, γE. The
brain’s representation of γE has received much emphasis in previ-
ous research and the mirrored, temporally blurred HR emerged as
a prominent model of RT. Technically, the HR model scales the
PDF, γE, by the reciprocal of its survival function (1 − CDF), in
which CDF is the corresponding cumulative distribution function:
HR = PDF

1−CDF. When there is event certainty (PO = 1), the CDF
approaches 1 over time. When catch trials are used, the CDF
approaches PO over time. It is clear that as time elapses and the
CDF increases toward PO that the higher the PO, the steeper the
rise of the HR.
In previous work, we have shown that the claim of the HR as a

canonical model of RT does not hold (27). Instead, a compu-
tationally simpler model based on the reciprocal event PDF, γE,
outperforms the HR (in an experimental design with a single
fixed percentage of catch trials, i.e., a single level of PO). The
current experiments put both the HR and the reciprocal PDF
models to the test under different values of PO. The results
clearly confirm that the reciprocal PDF is the better model
across all levels of PO (SI Appendix, Discussion 2).
Regarding the relationship between the effects of PO and γE on

RT, no obvious dependence was observed. The event PDF γE did
not seem to affect the computations driven by PO. This raises the
question of how the two uncertainties are combined and repre-
sented. It was proposed that the brain can hold two parallel states,
described by one PDF reflecting γE and one PDF reflecting the
complementary probability of the event not having occurred until
a time point t (26). The shapes of both PDFs are identical, but the
latter PDF is inverted. In our case, it seems that the brain indeed
computes two variables that change over time. To investigate this
hypothesis further, however, would require targeted experiments,
including the analysis of neural data.
The impact of our experimental manipulations on behavior may

be investigated at different levels of analysis (52). In similar tasks
involving speeded choice, the implementation of the computations
involved is often described with process models, of which the drift-
diffusion model (DDM) (53) is a prominent example. DDMs are
widely employed in the context of two alternative, forced-choice
tasks and may be extended to cover three and even more choices
(54). However, DDMs’ complexity and the assumptions on which
they are based, like the central hypothesis that RT is a function of
signal-to-noise ratio, have also led to criticism of this class of
models (55). We aimed to avoid the assumptions that these process
models require. Consequently, our experimental task does not
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contain an obvious decision component: The act of pressing the
button is solely contingent on the appearance of an easily per-
ceptible “go” cue. Our modeling approach was guided by com-
putational parsimony and focused on the mapping between
stochastic input to RT output to generate hypotheses about the
specific computations involved.
Behavioral experiments investigating only one sensory mo-

dality may fail to differentiate between central processing and
modality-specific computations. We identified a processing dif-
ference between audition and vision: The dynamic modulation of
cross-modality ΔRT was modeled with an exponential function
(27). This model provided a good qualitative account of ΔRT,
irrespective of γE and PO, which invites the hypothesis of a
process distinct from the estimation of the two uncertainty pa-
rameters themselves. Since the range of “go” times was not pa-
rameterized, we could not further investigate this cross-modality
difference at very short “go” times. However, previous research
on time estimation informs about tasks without temporal un-
certainty. It is, for example, well known that the brain can syn-
chronize to auditory metronomes of much shorter interonset
intervals than visual metronomes (56). The underlying mecha-
nisms are not well understood (57). The temporal resolution of the
auditory system is argued to be higher than in vision (58), which
would attribute the differences in processing we observed to more
peripheral sensory contingencies. Activity in the auditory system
also has been proposed to be directly related to the motor system
(59–61), much more so than in vision (62), highlighting audition’s
complex relation to more central computations also found in tem-
poral prediction (63). Taken together, modality specificity is an
important aspect of temporal–probabilistic inference, requiring an
account of both central and peripheral processing components.
Our findings illuminate how the brain models uncertainty over

time. First, we show that the probability of event occurrence
modulates temporal expectation dynamically across time. Sec-
ond, we present compelling evidence that the two sources of
uncertainty affect temporal expectancy independently, which
generates the hypothesis that this behavior may be driven by
independent neuronal systems. Although other sources of un-
certainty may be relevant in the fundamental cognitive task of
event prediction, our results aid the identification of neural
correlates of predictive processes in time.

Materials and Methods
Ethics Statement. The experiments were approved by the Ethics Council of the
Max Planck Society. Written informed consent was given by all participants
before the experiment.

Subjects. A total of 24 human participants (15 female), aged 19 to 33 y (mean
26 y), completed the experiments. They were right-handed and had normal
or corrected-to-normal vision and reported no hearing impairment and no
history of neurological disorder. Participants were naive to the purpose of
the experiment. They received V10 per hour for participating.

Task and Procedure. In visual and auditory blocks of trials, participants per-
formed a simple set–go task in which a “set” cue was followed by a “go” cue.
The time span between the onset of both cues (the “go” time) was a random
variable that was drawn from one of four PDFs, γE, (uniform, Gaussian, ex-
ponential, or flipped exponential). Participants were asked to press a button as
fast as possible with their right index finger in response to the “go” cue onset.
In case the trial did not feature a “go” cue (a catch trial), participants were
instructed to not press the button. They were asked to foveate a central black
fixation dot during the entire experimental block and restrict eye blinks to the
time after their response (i.e., during the intertrial interval [ITI]). After each
button press, a small black circle appeared for 0.2 s around the central fixation
dot, indicating the end of the trial.

The experiment consisted of four separate sessions each taking place at the
same time of the day on four consecutive days. The probability of “go” cue
occurrence, PO, was manipulated in the experiment. In one third of the ex-
perimental blocks, there were no catch trials (i.e., every trial featured a “go”
cue [PO = 1]), in another third, the probability of a catch trial was 0.2 (PO = 0.8),

and in the remaining third of blocks, the probability of a catch trial was 0.4
(PO = 0.6). In the catch trials, a small black circle appeared 1.9 s after “set” cue
onset, indicating again the end of the trial. Within each single session, all three
PO levels were presented. The event PDF, γE , was fixed within single sessions
(session #1: uniform, session #2: Gaussian, session #3: exponential, and session
#4: flipped exponential). A session consisted of six blocks per sensory modality
and lasted ∼2.5 h. A single block was comprised of 120 trials (0% catch trials,
PO = 1), 150 trials (20% catch trials, PO = 0.8), or 200 trials (40% catch trials,
PO = 0.6). A short training block was run before the first block of each sensory
modality on all days to familiarize participants with the task.

All stimuli were generated using MatLab (the MathWorks) and the Psy-
chophysics Toolbox (PTB-3) (64) on a Fujitsu Celsius M730 computer running
Windows 7 (64 bit). The experiment took place in a dimly lit soundproof
booth. Participants wore headphones and positioned their heads on a
forehead-and-chin rest (Head Support Tower, SR Research Ltd.) at a fixed
distance of 60 cm relative to the computer monitor. An eye tracker (Eyelink
DM-890, SR Research Ltd.) recorded participants’ eye movements at a sampling
frequency of 500 Hz for fixation control.

Visual Stimuli. The “set” cue consisted of two checkerboard patterns, which
were presented simultaneously. One was positioned to the left of a central
black fixation dot and the other on the opposite side. The “go” cue consisted of
two checkerboard patterns the same location but with the black–white pattern
reversed. Each checkerboard subtended 6.5 × 6.5° of visual angle and consisted
of 7 × 7 black and white squares of equal size. The center of each checkerboard
was positioned at a horizontal distance of 8.7° of visual angle and at a vertical
distance of 0° from the center of the central fixation dot. “Set” and “go”
stimuli were each presented for 50 ms on a BenQ XL2420-B monitor (resolution
1,920 × 1,080, refresh rate 144 Hz), which was set to a gray background.

Auditory Stimuli. Two white noise bursts (50 ms duration, 8 ms cosine ramp,
onset and offset) served as “set” and “go” cues. The stimuli were presented
diotically at the same volume level for all subjects (∼60 dB SPL) using an RME
Fireface UCX interface and electrodynamic headphones (Beyerdynamic DT
770 PRO) driven by a headphone amp (Lake People GT-109).

Temporal Probabilities. The “go” time was a random variable drawn from
one of four PDFs, γE, (Fig. 1C) that was fixed during each of the four ex-
perimental sessions. The distributions were constructed so that the each one
could be arranged in five bins over time, with each bin containing a similar
number of trials. As the probability distributions only contained integer
values (i.e., the number of trials for each “go” time), it was not possible to
identify PDFs with exactly the same number of trials in each quintile. This
criterion was relaxed so that each quintile should have the same number of
trials ± 2.5% as the neighboring quintiles.
Uniform “go” time distribution.

γE(x) = 1
b − a

  for   x ∈ [a,b]. [6]

Gaussian “go” time distribution.

γE(x) = 1̅̅̅̅̅̅̅̅̅̅
2πσ2

√   e
(x−μ)2
2σ2 . [7]

The Gaussian distribution with parameters μ = 0.9 and σ = 0.25 was truncated
at the flanks, giving the distribution a spread of two SDs around the mean.
Exponential “go” time distribution. A parametric search identified a Weibull dis-
tribution with parameters k = 1 and l = 0.33 to accord with the requirements
for a “go” time distribution outlined above.

γE(x) = k
l
(t
l
)k−1e−(tl)k . [8]

The shape parameter k =1 reduces the Weibull to an exponential
distribution:

γE(x) = 1
l
e−(tl). [9]

Truncation at the flanks gave the distribution a spread of 1 s to accord with
the other distributions.
Flipped exponential “go” time distribution. The exponential “go” time distribution
was mirrored around the mean “go” time to arrive at the flipped exponential
distribution.
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The x-axis of the four probability distributions was discretized with a step
size of 33 ms, resulting in discrete approximations of the continuous functions.
This discretization is arguably not perceivable in the context of the “set”–“go”
design, rendering the distributions continuous to the brain. The y-axis was also
discretized as the probability distributions described the number of trials at
each discrete “go” time point. All distributions were offset by 0.4 s, resulting in
a range of “go” times from 0.4 to 1.43 s for uniform, exponential, and flipped
exponential conditions and 0.4 to 1.4 s for the Gaussian condition.
Randomization in experimental conditions.Within each of the four distributions, the
order of “go” times was randomized, allowing for no more than two consecutive
trials with the same “go” time tominimize sequential effects. The ITI was randomly
drawn from a uniform distributionwith a range of 1.4 to 2.4 s. To control for order
effects, the conditions (sensory modalities, probability distributions, and level of
catch trials) were arranged in a Latin square design, based on which modality,
distribution, and catch trial percentage were shuffled and balanced across subjects.
Within each probability distribution condition, the percentage of catch trials
changed after two blocks without notification. Per block, 120 “go” cue trials were
presented. Each participant was exposed to 240 “go” cue trials per sensory mo-
dality, per “go” time distribution, and per catch trial percentage, resulting in 1,440
trials per session for each subject (5,760 trials for all four sessions) and a total of
138,240 “go” cue trials for all subjects (42,240 catch trials removed).

Data selection. Trials in which visual fixation was not maintained within a radius
of 5° visual angle around the central fixation point for more than 0.3 s during
the “go” time were discarded for data analysis (n = 1,121 trials). Based on
common practices in the literature, anticipatory responses and early guesses
(4) were removed by a lower bound of RT of 0.05 s (n = 3,368). Likewise, to
eliminate RTs that were unreasonably long for the employed simple RT task
(4), RTs longer than 1.05 s were removed (n = 251 trials). After removal of
nonfixation trials and trials whose RT was outside the defined cutoff, 133,500
trials remained for analysis. The histogram of all analyzed RTs indicates that
removal of RTs did not truncate substantial parts of their distribution (SI Ap-
pendix, Fig. S20).

Data Availability.AnonymizedRT data havebeendeposited in Edmond (https://
edmond.mpdl.mpg.de/imeji/collection/2OqgP9U__VOl4CJT?fq=collection%
3D2OqgP9U__VOl4CJT). All other study data are included in the manuscript
and/or SI Appendix.
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